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About My Work 3

• Joint PhD student between Data ScienceTech Institute (DSTI) and

INRIA France

• PhD thesis: Neuro-symbolic reasoning in Language Models to

bootstrap Ontology Engineering

• Goal: Establish Language Models (LMs) as effective assistants in

ontology extension

• Current limitations:

• Ontology extension is manual and time-consuming

• Natural language is ambiguous for representing information

• Language models hallucinate

• Language models are black-boxes
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• Combine LM knowledge with symbolic methods for ontological tasks

• Refine LMs as a reliable interface to assist ontologists

• Use LMs to explain ontological choices like class extensions

• Research Questions (RQs):

• RQ1: How do different formal representations affect LM reasoning?

• RQ2: How can LMs use formal representations to extend an

ontology?

• RQ3: How can LMs explain generated ontological choices with

logical tools like syllogisms?
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• Identification of viable formal data language as NL alternative (current

work)

• Efficient encoding of external knowledge in LMs for ontology extension

• Evaluation methods for LM-generated ontological classes and

properties

• Injection of logical tools like syllogistic reasoning to guide and explain

LM generation
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• SEF-CLGC pipeline: automated

generation and evaluation of

different formal languages for LMs

on FOL reasoning task

• Language selection criteria:

• Verbosity → compact vs

verbose

• Frequency → seen vs unseen

by LM

• Abstractness → natural

language vs mathematical

• Representation → finiteness
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• Dataset: FOLIO → set of 𝑛 premises and 𝑚 conclusions in NL and their

corresponding FOL annotations

• Goal: Predict if conclusions are True, False or Uncertain

• Runs consist of variations of (Model, Grammar, Learning Method)

• Sub-Research Questions (SRQs):

• SRQ1: Which training method yields the best results for solving

FOL problems with LMs?

• SRQ2: How do formal representations scale with models?

• SRQ3: Does a more compact vocabulary boost model

performance for formal languages?
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• SFT results show that NL is still the best representation

• CLIF representation offers a competitive formal alternative

• Formal languages scale consistently with model size
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• ZS and FS training methods perform less well than SFT

• Grammar passing boosts ZS and has no effect on FS prompting

• Formal languages keep same performance order in ZS as in SFT
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• Tokenizer re-training on language grammar yields impressive

performances at small scale (e.g. TFL+) but collapses with scaling

• Does not outperform standard SFT
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• SEF comparison shows that formal languages have similar

performance on different syllogism categories as NL

• Formal languages like CLIF can replace NL as less verbose

formalization without sacrificing too much performance



Preliminary Results 13

• SRQ1: Which training method yields the best results for solving FOL

problems with LMs? SFT remains the best training method

• SRQ2: How do formal representations scale with models? Controlled

formal languages scale well while keeping consistent

performances

• SRQ3: Does a more compact vocabulary boost model performance for

formal languages? Tailoring the tokenizer vocabulary to that of the

formal language yields erratic performances
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• Summary

• CLIF is a strong alternative for NL data representation

• Contributions

• SEF-CLGC pipeline

• In-context grammar passing for prompting strategy

• Tokenizer re-training on formal language vocabulary

• Future work

• Encode knowledge in formal language for ontology tasks

• Generate and use syllogistic reasoning to explain LM ontology

engineering choices

• Evaluate on HMAS domain data
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Year 1 Year 2 Year 3

• Literature

review

• Framework

• Metrics

• Framework

• Metrics

• Evaluation

• Results

Analysis

• Evaluation

• Results

Analysis

• Domain

Extension
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Thank you

Contact: hanna.abi-akl@inria.fr

Website: https://hannaabiakl.github.io/

GitHub: https://github.com/HannaAbiAkl

https://hannaabiakl.github.io/
https://github.com/HannaAbiAkl
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